ROSE: A Deep Learning Based Framework for Predicting Ribosome Stalling
نویسندگان
چکیده
منابع مشابه
PEDLA: predicting enhancers with a deep learning-based algorithmic framework
Transcriptional enhancers are non-coding segments of DNA that play a central role in the spatiotemporal regulation of gene expression programs. However, systematically and precisely predicting enhancers remain a major challenge. Although existing methods have achieved some success in enhancer prediction, they still suffer from many issues. We developed a deep learning-based algorithmic framewor...
متن کاملDeep learning-based CAD systems for mammography: A review article
Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...
متن کاملModeling translation elongation dynamics by deep learning reveals new insights into the landscape of ribosome stalling
Translation elongation plays a central role in multiple aspects of protein biogenesis, e.g., differential expression, cotranslational folding and secretion. However, our current understanding on the regulatory mechanisms underlying translation elongation dynamics and the functional roles of ribosome stalling in protein synthesis still remains largely limited. Here, we present a deep learning-ba...
متن کاملA tensor-based deep learning framework
This paper presents an unsupervised deep learning framework that derives spatio-temporal features for human-robot interaction. The respective models extract high-level features from low-level ones through a hierarchical network, viz. the Hierarchical Temporal Memory (HTM), providing at the same time a solution to the curse of dimensionality in shallow techniques. The presented work incorporates...
متن کاملA Deep Reinforcement Learning-Based Framework for Content Caching
Content caching at the edge nodes is a promising technique to reduce the data traffic in next-generation wireless networks. Inspired by the success of Deep Reinforcement Learning (DRL) in solving complicated control problems, this work presents a DRL-based framework with Wolpertinger architecture for content caching at the base station. The proposed framework is aimed at maximizing the long-ter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2018
ISSN: 1556-5068
DOI: 10.2139/ssrn.3155721